疫情期间手机直线:18622734798
当前位置:首页网站设计:基础篇 → 全部信息
.net3.0特性介绍
更新时间:2014/1/27 点击:8288次
这个特性非常简单,有些JavaScript的影子,我们可以统一使用使用"var"关键字来声明局部变量,而不再需要指明变量的确切类型了,变量的确切类型可通过声明变量时的初始值推断出来。这样一来,可以大大简化我们声明局部变量的工作量了,下面是一个例子:
  class LocalVariables : AppRunner.AbstractApplication
  {
  public override void Run()
  {
  var intValue = 5;
  var stringValue = "This is a string";
  var customClass = new LocalVariables();
  var intArray = new int[3] { 1,2,3 };
  foreach (var value in intArray)
  Console.WriteLine(value);
  }
  }
  上面的代码将被解析成:
  class LocalVariables : AppRunner.AbstractApplication
  {
  public override void Run()
  {
  int intValue = 5;
  string stringValue = "This is a string";
  LocalVariables customClass = new LocalVariables();
  int[] intArray = new int[3];
  foreach (int value in intArray)
  Console.WriteLine(value);
  }
  }
  要特别注意的是,由于变量的类型是通过变量初始值推断而来的,所以在声明变量的同时必需为变量指定初始值。并且,变量并不是没有类型的,变量一旦初始化之后,类型就确定下来了,以后就只能存储某种类型的值了,比如上面的stringValue的类型经推断为string,所以该变量就只能保存string类型的值了。

匿名类型

  有些时候我们需要临时保存一些运算的中间结果,特别是当这些中间结果是由多个部份组成时,我们常常会去声明一个新的类型,以方便保存这些中间结果。表面上看起来这很正常,而细想之后就会发现,这个新类型只服务于这个函数,其它地方都不会再使用它了,就为这一个函数而去定义一个新的类型,确实有些麻烦。
  现在,C#3.0中的匿名类型特性就可以很好的解决上面提到的问题,通过匿名类型,我们可以简单使用new { 属性名1=值1,属性名2=值2,.....,属性名n=值n }的形式直接在函数中创建新的类型,看下面这个例子:
  class AnonymousType : AppRunner.AbstractApplication
  {
  public override void Run()
  {
  var anonymousType1 = new {
  CardNumber = "10001",Name = "van’s",Sex = true
  };
  Console.WriteLine(anonymousType1.CardNumber);
  Console.WriteLine(anonymousType1.Name);
  var anonymousType2 = new {
  CardNumber = "10002",Name = "martin",Sex = true
  };
  anonymousType2 = anonymousType1;
  }
  }
  在新类型中只能有字段成员,而且这些字段的类型也是通过初值的类型推断出来的。如果在声明新的匿名类型时,新类型的字段名、顺序以及初始值的类型是一致的,那么将会产生相同的匿名类型,所以上例中anonymousType1和anonymousType2的类型是相同的,自然能进行anonymousType2=anonymousType1的赋值。

隐式类型化数组

  这个特性是对隐式类型化本地变量的扩展,有了这个特性,将使我们创建数组的工作变得简单。我们可以直接使用"new[]"关键字来声明数组,后面跟上数组的初始值列表。在这里,我们并没有直接指定数组的类型,数组的类型是由初始化列表推断出来的。
  class AnonymousTypeArray : AppRunner.AbstractApplication
  {
  public override void Run()
  {
  var intArray = new[] { 1,2,3,4,5 };
  var doubleArray = new[] { 3.14,1.414 };
  var anonymousTypeArray = new[] {
  new { Name="van’s",Sex=false,Arg=22 },
  new { Name="martin",Sex=true,Arg=23 }
  };
  Console.WriteLine(intArray);
  Console.WriteLine(doubleArray);
  Console.WriteLine(anonymousTypeArray[0].Name);
  }
  }
  上面的代码中,anonymousTypeArray变量的声明同时运用了隐式类型化数组和匿名类型两种特性,首先创建匿名类型,然后再初始值列表,推断出数组的确切类型。

对象构造者

  我们在声明数组时,可以同时对其进行初始化,这样就省去了很多麻烦,但是在创建类的对象时,这招可就不灵了,我们要么调用该类的构造函数完成对象的初始化,要么就手工进行初始化。这两种方法都不太方便,使用构造函数来对对象进行初始化时,我们为了某种灵活性,可能需要编写构造函数的多个重载版本,实在是麻烦。
  C#3.0中加入的对象构造者特性,使得对象的初始化工作变得格外简单,我们可以采用类似于数组初始化的方式来初始化类的对象,方法就是直接在创建类对象的表达式后面跟上类成员的初始化代码。具体示例如下:
  class Point
  {
  public int X { get; set; }
  public int Y { get; set; }
  public override string ToString()
  {
  return "(" + X.ToString() + "," + Y.ToString() + ")";
  }
  }
  class Rectangle
  {
  public Point P1 { get; set; }
  public Point P2 { get; set; }
  public Rectangle()
  {
  P1 = new Point();
  P2 = new Point();
  }
  public override string ToString()
  {
  return "P1: " + P1 + ",P2: " + P2;
  }
  }
  class ObjectBuilder : AppRunner.AbstractApplication
  {
  public override void Run()
  {
  Point thePoint = new Point() { X = 1,Y = 2 };
  Console.WriteLine("Point(X,Y) = ",thePoint);
  Rectangle theRectangle = new Rectangle() {
  P1 = { X = 1,Y = 1 },P2 = { X = 100,Y = 200 }
  };
  Console.WriteLine(theRectangle);
  }
  }
  我们在定义Point类的X和Y属性时,只须写上该属性的get和set访问器声明,C#编译器会自动为我们生成默认的get和set操作代码,当我们需要定义简单属性时,这个特性非常有用。
  我们以new Point() { X = 1,Y = 2 }语句,轻松的完成了对Point类的初始化工作。在创建类的对象时,我们可以按照需要去初始化类的对象,只要在类的创建表达式后跟上要初始化属性的列表即可,且可以只对需要初始化的属性赋初值,而无需把所有属性的初始值都写上去。
  在theRectangle对象的初始化表达式中,我们首先对P1属性进行初始化,然而P1属性也是一个自定义的类型,所以P1属性的初始化是另一个类型(Point)的初始化表达式,我们可以这样的方式来对更加复杂的类型进行初始化。
  上篇文章中介绍了C# 3.0中比较简单的四个特性,分别是隐式类型化本地变量、匿名类型、隐式类型化数组,以及对象构造者,下面我将对C# 3.0中的较复杂,同时也是非常强大的几个特性进行介绍,供大家快速浏览。

集合构造者

  我们可以在声明数组的同时,为其指定初始值,方法是直接在数组声明的后面跟上初始值列表。这样就使数组的初始化工作变得简单,而对于我们自己创建的集合类型,就无法享受到与普通数组一样的待遇了,我们无法在创建自定义集合对象的同时,使用数组的初始化语法为其指定初始值。
  C# 3.0中加入的集合构造者特性,可使我们享受到与普通数组一样的待遇,从而在创建集合对象的同时为其指定初始值。为了做到这一点,我们需要让我们的集合实现ICollection<T>;接口,在这个接口中,完成初始化操作的关键在于Add函数,当我使用初始化语法为集合指定初始值时,C#编译器将自动调用ICollection<T>;中的Add函数将初始列表中的所有元素加入到集合中,以完成集合的初始化操作。使用示例如下:
  class CollectionInitializer : AppRunner.AbstractApplication
  {
  class StringCollection : ICollection<string>
  {
  public void Add(string item)
  {
  Console.WriteLine(item);
  }
  // Other ICollection<T> Members
  }
  public override void Run()
  {
  StringCollection strings = new StringCollection() { "Van's","Brog","Vicky" };
  }
  }
  在这个示例中,编译器会自动为strings对象调用Add方法,以将初始值列表中的所有元素加入到集合中,这里我们只是简单将初始值列表中的元素输出到控制台。

Lambda表达式

  C# 2.0中加入的匿名代理,简化了我们编写事件处理函数的工作,使我们不再需要单独声明一个函数来与事件绑定,只需要使用delegate关键字在线编写事件处理代码。
  而C# 3.0则更进一步,通过Lambda表达式,我们可以一种更为简洁方式编写事件处理代码,新的Lambda事件处理代码看上去就像一个计算表达式,它使用"=>"符号来连接事件参数和事件处理代码。我可以这样写:SomeEvent += 事件参数 => 事件处理代码;下面是完整的示例:
  delegate T AddDelegate<T>(T a,T b);
  class LambdaExpression : AppRunner.AbstractApplication
  {
  public static event EventHandler MyEvent;
  public override void Run()
  {
  MyEvent += delegate(object s,EventArgs e)
  {
  Console.WriteLine(s);
  };
  MyEvent += (s,e) => { Console.WriteLine(s); };
  MyEvent(this,null);
  AddDelegate<string> add = (a,b) => a + b;
  Console.WriteLine(add("Lambda","Expression"));
  }
  }
  在上面的例子中,分别使用了匿名代理和Lambda表达式来实现同样的功能,可以明显看出Lambda表达式的实现更为简洁。我们在使用Lambda表达式编写事件处理代码时,无需指明事件参数的类型,且返回值就是最后一条语句的执行结果。

扩展方法

  当我们需要对已有类的功能进行扩展时,我们通常会想到继承,继承已有类,然后为其加入新的行为。而C# 3.0中加入的扩展方法特性,则提供了另一种实现功能扩展的方式,我们可以在不使用继承的前提下实现对已有类本身的扩展,这种方法并不会产生新的类型,而是采用向已有类中加入新方法的方式来完成功能扩展。
  在对已有类进行扩展时,我们需将所有扩展方法都写在一个静态类中,这个静态类就相当于存放扩展方法的容器,所有的扩展方法都可以写在这里面。而且扩展方法采用一种全新的声明方式:public static 返回类型 扩展方法名(this 要扩展的类型 sourceObj [,扩展方法参数列表]),与普通方法声明方式不同,扩展方法的第一个参数以this关键字开始,后跟被扩展的类型名,然后才是真正的参数列表。下面是使用示例:
  static class Extensions
  {
  public static int ToInt32(this string source)
  {
  return Int32.Parse(source);
  }
  public static T[] Slice<T>(this T[] source,int index,int count)
  {
  if (index < 0 || count < 0 || index + count > source.Length)
  {
  throw new ArgumentException();
  }
  T[] result = new T[count];
  Array.Copy(source,index,result,0,count);
  return result;
  }
  }
  class ExtensionMethods : AppRunner.AbstractApplication
  {
  public override void Run()
  {
  string number = "123";
  Console.WriteLine(number.ToInt32());
  int[] intArray = new int[] { 1,2,3 };
  intArray = intArray.Slice(1,2);
  foreach (var i in intArray)
  Console.WriteLine(i);
  }
  }
  在上面的示例中,静态的Extensions类中有两个扩展方法,第一个方法是对string类的扩展,它为string类加入了名为ToInt32的方法,该方法没有参数,并返回一个int类型的值,它将完成数字字符向整数的转换。有了这个扩展方法之后,就可对任意string类的对象调用ToInt32方法了,该方法就像其本身定义的一样。
  第二个扩展方法是一个范型方法,它是对所有数组类型的扩展,该方法完成数组的切片操作。
  C# 3.0中的Linq表达式,就是大量运用扩展方法来实现数据查询的。

Linq查询表达式

  C# 3.0中加入的最为复杂的特性就是Linq查询表达式了,这使我们可直接采用类似于SQL的语法对集合进行查询,这就使我们可以享受到关系数据查询的强大功能。
  Linq查询表达式是建立在多种C# 3.0的新特性之上的,这也是我为什么最后才介绍Linq的原因。下面看一个例子:
  class LinqExpression : AppRunner.AbstractApplication
  {
  public override void Run()
  {
  // 定义匿名数组persons,并为其赋初值
  var persons = new[] {
  new { Name="Van's",Sex=false,Age=22 },
  new { Name="Martin",Sex=true,Age=30 },
  new { Name="Jerry",Sex=false,Age=24 },
  new { Name="Brog",Sex=false,Age=25 },
  new { Name="Vicky",Sex=true,Age=20 }
  };
  /*
  执行简单Linq查询
  检索所有年龄在24岁以内的人
  查询结果放在results变量中
  results变量的类型与数组persons相同
  */
  var results = from p in persons
  where p.Age <= 24
  select p;
  foreach (var person in results)
  {
  Console.WriteLine(person.Name);
  }
  Console.WriteLine();
  // 定义匿名数组customers,并为其赋初值
  // 该数组是匿名类型的
  var customers = new[] {
  new {
  Name="Van's",City="China",Orders=new[] {
  new {
  OrderNo=0,
  OrderName="C# Programming Language(Second Edition)",
  OrderDate=new DateTime(2007,9,5)
  },
  new {
  OrderNo=1,
  OrderName="Head First Design Patterns(Chinese Edition)",
  OrderDate=new DateTime(2007,9,15)
  },
  new {
  OrderNo=2,
  OrderName="ASP.NET Unleashed 2.0(Chinese Edition)",
  OrderDate=new DateTime(2007,09,18)
  },
  new {
  OrderNo=3,
  OrderName="The C++ Programming Langauge(Special Edition)",
  OrderDate=new DateTime(2002,9,20)
  }
  }
  },
  new {
  Name="Brog",City="China",Orders=new[] {
  new {
  OrderNo=0,
  OrderName="C# Programming Language(Second Edition)",
  OrderDate=new DateTime(2007,9,15)
  }
  }
  },
  new {
  Name="Vicky",City="London",Orders=new[] {
  new { OrderNo=0,
  OrderName="C++ Programming Language(Special Edition)",
  OrderDate=new DateTime(2007,9,20)
  }
  }
  }
  };
  /*
  执行多重Linq查询
  检索所在城市为中国,且订单日期为2007年以后的所有记录
  查询结果是一个匿名类型的数组
  其中包含客户名,订单号,订单日期,订单名四个字段
  */
  var someCustomers = from c in customers
  where c.City == "China"
  from o in c.Orders
  where o.OrderDate.Year >= 2007
  select new { c.Name,o.OrderNo,o.OrderDate,o.OrderName };
  foreach (var customer in someCustomers)
  {
  Console.WriteLine(
  customer.Name + "," + customer.OrderName + "," +
  customer.OrderDate.ToString("D")
  );
  }
  }
  }
  从上面的例子中,我们可以看到Linq查询的强大特性,它允许我们进行简单查询,或者进行更为复杂的多重连接查询。且查询的结果还可以是自定义的匿名类型。
  • 疫情期间手机直线:18622734798    服务邮箱:service@nfree.cn     QQ:1448132697
  • 地址:天津市河西区围堤道146号华盛广场B座22楼    

    津公网安备 12010302001042号

  • CopyRight 2006~2024 All Rights Reserved 天津市华易动力信息科技有限公司